skip to main content


Search for: All records

Creators/Authors contains: "Anderson, Clarissa R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In recent years, harmful algal blooms (HABs) have increased in their severity and extent in many parts of the world and pose serious threats to local aquaculture, fisheries, and public health. In many cases, the mechanisms triggering and regulating HAB events remain poorly understood. Using underwater microscopy and Residual Neural Network (ResNet‐18) to taxonomically classify imaged organisms, we developed a daily abundance record of four potentially harmful algae (Akashiwo sanguinea,Chattonellaspp.,Dinophysisspp., andLingulodinium polyedra) and major grazer groups (ciliates, copepod nauplii, and copepods) from August 2017 to November 2020 at Scripps Institution of Oceanography pier, a coastal location in the Southern California Bight. Random Forest algorithms were used to identify the optimal combination of environmental and ecological variables that produced the most accurate abundance predictions for each taxon. We developed models with high prediction accuracy forA. sanguinea(),Chattonellaspp. (), andL. polyedra(), whereas models forDinophysisspp. showed lower prediction accuracy (). Offshore nutricline depth and indices describing climate variability, including El Niño Southern Oscillation, Pacific Decadal Oscillation, and North Pacific Gyre Oscillation, that influence regional‐scale ocean circulation patterns and environmental conditions, were key predictor variables for these HAB taxa. These metrics of regional‐scale processes were generally better predictors of HAB taxa abundances at this coastal location than the in situ environmental measurements. Ciliate abundance was an important predictor ofChattonellaandDinophysisspp., but not ofA. sanguineaandL. polyedra. Our findings indicate that combining regional and local environmental factors with microzooplankton populations dynamics can improve real‐time HAB abundance forecasts.

     
    more » « less
  2. Abstract

    Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no‐take state marine reserves, and 76 partial‐take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no‐take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat‐wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem‐wide consequences resulting from acute climate‐driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.

     
    more » « less